Differential roles of human Dicer-binding proteins TRBP and PACT in small RNA processing
نویسندگان
چکیده
During RNA interference and related gene regulatory pathways, the endonuclease Dicer cleaves precursor RNA molecules to produce microRNAs (miRNAs) and short interfering RNAs (siRNAs). Human cells encode a single Dicer enzyme that can associate with two different double-stranded RNA (dsRNA)-binding proteins, protein activator of PKR (PACT) and trans-activation response RNA-binding protein (TRBP). However, the functional redundancy or differentiation of PACT and TRBP in miRNA and siRNA biogenesis is not well understood. Using a reconstituted system, we show here that PACT and TRBP have distinct effects on Dicer-mediated dsRNA processing. In particular, we found that PACT in complex with Dicer inhibits the processing of pre-siRNA substrates when compared with Dicer and a Dicer-TRBP complex. In addition, PACT and TRBP show non-redundant effects on the production of different-sized miRNAs (isomiRs), which in turn alter target-binding specificities. Experiments using chimeric versions of PACT and TRBP suggest that the two N-terminal RNA-binding domains of each protein confer the observed differences in dsRNA substrate recognition and processing behavior of Dicer-dsRNA-binding protein complexes. These results support the conclusion that in humans, Dicer-associated dsRNA-binding proteins are important regulatory factors that contribute both substrate and cleavage specificity during miRNA and siRNA production.
منابع مشابه
Human TRBP and PACT directly interact with each other and associate with dicer to facilitate the production of small interfering RNA.
Mammalian Dicer interacts with double-stranded RNA-binding protein TRBP or PACT to mediate RNA interference and micro-RNA processing. TRBP and PACT are structurally related but exert opposite regulatory activities on PKR. It is not understood whether TRBP and PACT are simultaneously required for Dicer. Here we show that TRBP directly interacts with PACT in vitro and in mammalian cells. TRBP and...
متن کاملDicer-TRBP complex formation ensures accurate mammalian microRNA biogenesis.
RNA-mediated gene silencing in human cells requires the accurate generation of ∼22 nt microRNAs (miRNAs) from double-stranded RNA substrates by the endonuclease Dicer. Although the phylogenetically conserved RNA-binding proteins TRBP and PACT are known to contribute to this process, their mode of Dicer binding and their genome-wide effects on miRNA processing have not been determined. We solved...
متن کاملThe role of PACT in the RNA silencing pathway.
Small RNA-mediated gene silencing (RNA silencing) has emerged as a major regulatory pathway in eukaryotes. Identification of the key factors involved in this pathway has been a subject of rigorous investigation in recent years. In humans, small RNAs are generated by Dicer and assembled into the effector complex known as RNA-induced silencing complex (RISC) by multiple factors including hAgo2, t...
متن کاملDistinguishable In Vitro Binding Mode of Monomeric TRBP and Dimeric PACT with siRNA
RNA interference (RNAi) is an evolutionally conserved posttranscriptional gene-silencing mechanism whereby small interfering RNA (siRNA) triggers sequence-specific cleavage of its cognate mRNA. Dicer, Argonaute (Ago), and either TAR-RNA binding protein (TRBP) or a protein activator of PKR (PACT) are the primary components of the RNAi pathway, and they comprise the core of a complex termed the R...
متن کاملMultiple sensors ensure guide strand selection in human RNAi pathways.
Small RNAs guide RNA-induced silencing complexes (RISCs) to bind to cognate mRNA transcripts and trigger silencing of protein expression during RNA interference (RNAi) in eukaryotes. A fundamental aspect of this process is the asymmetric loading of one strand of a short interfering RNA (siRNA) or microRNA (miRNA) duplex onto RISCs for correct target recognition. Here, we use a reconstituted sys...
متن کامل